

MICROOOPY RESOLUTION IEST CHART

AUTHOR TITLE

INSTITUTION
POB DATE
NOTE

AVAILABLE FROM

EDES PRICE
DESCRIPTORS

IDENTIFIERS

Gackay. Irefle Douglas
A Comparison of Students' Bchievenent in Arithemtic
 education Diagnostic and Instractional centre (uEDiC) Heport No. 2-75.
British Columbia Univ, Vancouver. Faculty of education.
[75]
42 p . ; Report from the Richmond project (ORACLE) ; For related documents, see $S E 021$ 337-338; Not available in hard copy due to marginal legibility of original document
Mathematics gducation Diagnostic and Instructional Centre (MEDIC), Faculty of Education, University of Eritish Columia, 2075 Hesbrook Place, Vancouver, B.C. V6T 1H5, Canada Academjc Achievement; *ichievement; Algorithms: Elementary Education; *Elementary School Hathematics; *Low Achie vers; Mathematics Bducation; *Research; *Student chasacteristics; whole Numbers Computation; Research Reports

The purpose of this study was to investigate the relationship between a student's confidence in his computational procedures for each of the Eour basic arithmetic operations and the student's achievement on computation problems. All of the students in grades 5 through 8 in one school system (a total of 6186 students) were given a questionnaire to determine their algorithmic confidence and a computational test for each of the four basic arithmetic operations on whole numbers. dation and multiplication tables accompanied the test. Data on 5440 responses vere used in the analyses. "Lov achievers" on a particulax computation test vere defined as those students scoring mory than one standard deviation below the mean of that test. There we a total of 267 low achievers on the addition test, 734 on the subtraction test, 735 on the multiplication test, and 985 on the division test. Of these low achievers. 226 expressed high algorithmic confidence in addition, 576 in subtraction, 513 in multiplication and 440 in division. The investigator concluded that for each arithmetic operation there vere a substantial number of low achievers who expressed high algorithmic confidence. (DT)

Documents acquired by ERIC include many informal unpublished materials not available from other sources. ERIC makes overy effort to obtain the best copy available. Nevertheless, items of marginal roproduciblity are often encountered and this affects the quality of the microfiche and hardcopy reproductions ERIC makes available via the ERIC Document Reproduction Service (EDRS) $-\sigma^{-}$is not responible for the quality of the original document. Reproductions supplied by EDRS are the best that can be made from

Marhematics Education Diagmestic and insfructional centre. WEDIS

BEST COPY AVAILABLE

FACUZTY Of education
THE UNIVERSITY OF BRIISHCOIUMBUA
2075 WESBROOKPLACE
VANCOUVER, BC, CANABA
Λ Comparinon of Studente' Achievement in Arithmelic with theie Algorithmic Confidence

```
by
Irene bouglas Mackay
```

Report Froni the Richnond Project (ORACLE)

David F. Robitaille, Principal Investigator

```
Mathematics Education Diagnostic and Instructionel Centre
    Department of Mathematics Education
        Lniversity of British Columbia
            Vancouver, B.C.
                V6T 1W5
```


CONT:NTS

pape
Char ser 1
Int soduction 1
Chapter 11
Ratiomalo 7
Chaptor ill Method und Resuis 15
Chiptet IV Corcturion and Implica"ions for Fur the stady 21
Auporai iors 24
Re"eroners 38

Many students who are reforred to the fathomatics Diagnostic and Instructional Clinic (OXIC) at the Universily of Fritish Columbia for remediation are confident that their comutational procedures are correct. They are confident even though they are usually unabie to obtain a correct answer. It is felt that remediation may be hampered by the fact that a student believes his conputational procedures are correct, when, in fact, he is unable to compute accurately. It was decided that there is a need to study the relationahip between a student's algorithmic confidence in performing each of the four basic arithnetic cperations and the student's achiovoment,

The District Superintendent for the Richnond School Board, Mr. C. Holob, was contacted by letter (Appendix I) asking permission to gather some achievement and algorithmic confidence data on students enrolled in Graces 5 through 8 in the Richmond schools. The proposed study was also described in this letter. In reply, the District Superintendent expressed the willingness of the Richnond schools to participate in the project. A notice (Appendix II) was sent to all elenentary principals and teachers of Grades 5, 6, ard 7 by Mr. Holob'regarding the MEDIC project. The testing project was carried out with all students of Grades 5, 6, 7, and 8 in the Richmond District. The following tajle gives the number of students according to grade level in the district.

Grabe	5	5	7	8	Total
Encolment	1.472	1577	1566	1571	6180

lest booklets (Appendix Iti) were prepared aceording to the following fomat. The first page was designed to ofllect por $=$ sonal data on each stadont-mane, grade, division, school, age, date of birth, sex--ani thar algoritimic confinence. To determine a student's algorithanis confidence in addition, for example. the student was asked the following question. How sure are you trat yom why of motic is correct? The student had a chyece of five roplios and was askad to respond to one by putting an X through one of the letters a, b, c, d, or e. These were their chuices:
a. I'm positive that ily way is correct.
b. I'mpretty sure that my way is correct.
c. I don't know if my way is correct or not.
d. I'm protty sure mo way is wrong.
e. I'm positive my way is wrong.

The sane questions were asked for the other tiree arithnetic operations--subtraction, multiplication ard division.

The computational test consisted of four sub-tests. That is, there was a test in each of the four basic arithmetic operations of whole numbers. Accompanying each test was a sheet containing the addition and multiplication tables (Appendix IV). These tables were made available in an effort to eliminate errors
in basic number fates so that the emphasis would be more directly placed on the student's computational procedures. 'Tho test was so designed that it included different categories of question types in each of the sub-tests. The itoms for cach test were selected according to a diagnosis form for intormediate grades (Appendix V). The form or check-list is structured in an heirarchial order of difficulty. That is, the check-list is arranged in order of harder to easier computations. For instance, in the addition of whole numers the order of difficulty is as follow:

1. three-digit numbers with regrouping.
2. two-digit numbers with regrouping
3. sing 70 colum with regrouping.
4. single column with no regrouping. Generally three test items were constructed corresponding to each of the four levels of algorithmic difficulty. Other considerations were observed to maintain variety in the question types. For cxample, in subtraction the vertical and horizontal form were included. Different positions of zero in the minuend and subtrahend were uscl. The following table indicates the types of questions according to the check-1ist and their distribution on the sub-tests.

> Table II

The check-list for subtraction is:

1. two consecutive 0 's in the minuend.
2. one 0 in the minuend.
3. with regrouping.
4. no regrouping.

Table III
Distribution of Subtraction Items Azcording to Type

Iteris	a	b	c	d	e	E	g	h	j	j	k	1
1	\checkmark			\checkmark		\checkmark				\checkmark		
2					\checkmark		\checkmark					
3			1						\checkmark		\checkmark	
4		\checkmark						\checkmark				\checkmark

Multiplication check-1ist:

1. Three-digit multiplier.
2. two-digit multiplier.
3. one-digit multiplier; with regro ping.
4. one-digit multiplier with no regrouping.

Table IV
Distribution of Multiplication Items According to Type

Division check-1ist:

1. Zero in the quotient.
2. Two-digit divisors without or with remainder.
3. One-digit divisor with remainder.
4. One-dig.t divisor with no remainder. Table V

Previous to the Richnond project a pilot study was conducted ahout the middle of Janary, 1975 at the University lill 1月mentary Schooi. Sixty students in grades 5 and 6 were involved. The reason for the pilot study was to obtain an estimate of the time required for each test and to find out if there were any problems with the test. The time required was approxinately forty minutes for 90% of the students. Following the pilot study, the tests were administered to the students of Richnond District the first week in February, 1975.

Classroon teachers conducted the tosting with their students. Teachers were previously instructed that the tests were to be administered according to the following procedures. Firstly, the students were to be shown how to use the addition and multiplication tables which were provided. Secondly, teachers were to explain the structure of the tests to the students. Thirdly, the students were to be told that there was no time limit on the tests.

Following the testing about 5700 responses were collected of which 5440 were used. Table VI shows the distribution of testing according to grade and sex.

Table IV

| | | | | 8 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Grade | 5 | 6 | 7 | 8 | |
| Boys | 705 | 728 | 747 | 606 | 2786 |
| Girls | 655 | 746 | 664 | 589 | 2654 |
| Total | 1360 | 1474 | 1411 | 1195 | 5440 |

Twi hundred sixty tosts were discarded because sone of the personal information requested on each student--name, grade, age, date ar birth--was missing or else the student did not complete the assessment of his algorithmic confidence in computational procedures. The tests were marked for accuracy by undergraduate students in Febs :iry and March, 1975. A11 nunerical data were collected and key punched for computer analysis about mic' April, 1975. During Junc and July, 1975 all student errors will be examined and coded according to a category system which had previously been developed.

The data will be analyzed for two different purposes: firstly, to examine the relationships between confidence and performance over operations, grades, sexes, ages, and confidence and performance levels; secondly, to examine the relationships between different error types over operations, grades, sexes, ages, and confidence and performance levels.

The objective of this paper is to discuss the first of these two purposes.

Relative to the various changes and activitios taking place in the clementary arithnetic curriculun and cortain arcas of the instructional progran, the area of diagnosis and remediacion has been quite static. Early work in diagnosis in arithnetic errors was mostly limited to dotemining the kinds and frequency of errors in computational skills. Later, concerns were slanted to growth in meanings and understandings basic to the computational process.

More recent concems in diagnosis are the conmpex relation ship botween growth in arithmetic development and affoctive factors such as anxiety, motivation, and attitude. Ramon Ross (1964) roporting on the twenty case studies carried out with sixth and seventh grade students revealed a great deal of disparity between actual achievement and expected achievement in elementary school mathematics. He suggested that sixty-throe percent of the causes of underachievement identified by classroom teachers were of an emotional nature, involving lack of interest, home or school maladjustment, short attention span, or limited initiative. It would appear from this study that arithmetic undorachievement is a complex and multiple-factored disability.

John W. Wilson (1967) also expressed a similar concern in diagnosing the cause of underachievement in elementary school mathematics when he states,

It has become increasingly apparent in our work with individual children... that underachiovement... in mathenatics...is far from being of one kind... of several children with the same degree of general underachiovement in mathematics, each has unique symptomatic patterns of that underachievenent.

The fact that Wilson recognized that each student has "uniquo symptomatic patterns of underachievenont" suggests the complexity of the nature of underachicvenent as well as the complexity of diagnosing the cause and the method of remediation. In other words, Wilson and Ross underline the complexity of both diagnosing the cause of a student's difficulty in mathenatical operations as well as the difficulty in correcting or rencdiating the problem. The question to be answered is how can you successfully prescribe treatment or remediation without knowing the root of the difficulty? The root of the difficulty that came to the attention of the Mathematics Education Diagnostic and Instructional Centre (AEDIC) at the University of British Columbia was the fact that some students who were referred for remedial help and who were unsuccessful in their daily computations had high confidence that their computational procedures were correct.

The question to be argued in this paper is- how does a student's confidence in his computational procedures affect the subsequent success of remediation? An extensive search of the literature has failed to produce an answer to this question.

To date, in the remediation process, the remediator has tried to build confidence in the student but naybe the remediator is taking the wrong approach. It may be that it is necessary to extinguish a student's computational confidence in his incorrect algorithm before the actual remediation takes place.
si

Common expectations are held that low achievers have low confidence which needs to be inmproved. On the contrary, it could be that low achievers have high confidence which has to be extinguished before effective remediation can occur. As already mentioned it has been noticed that anong low achievers referred to MEDIC, there is a rumber of students who are confident that they know how to perform the arithmet ic algorithos. But the interesting question is, why do 10 w ackievers express algorithnic confidence in their computationa1 procedures when they constantly get most of their exercises wrong? Does a student's expression of confidence in his work stem from a naturally confident personality? It may be the result of positive values taught in the home. These positive values may give rfse to a confident, positive outlook on the various activities of 1 ife. That is, from an early age, these values, once instilled, nay be reflected in a student's personality by Eelings of confidence in whatever he does. Woodruff (1962) seens to suggest this when he says,
over the years we graduaily develop well established feelings about things; and these feelings, based on their values, show up in the way we react toward things. The Eeelings become inseparably interwoven with the mental picture.

But this argumert does not hold because remediators are aware from working with the low achiever that he is not confident in all of his daily activities. Why does he have algorithmic confidence then?

Is it because the low achicver thinks he understands the concept when it is trught by the teacher but in reality he does not? Browne 11 (1944), in addressing lack of understanding in
students says,
...most errors in mathematics are the result not of imperfectly learned symbols, but of incomplete understandings.
Evidence of lack of understanding by the low achiever is apparent in the tests. For example, in using the subtraction algorithm, it was apparent that one student's understanding of the subtraction operation meant to literally take away or remove the subtrahend from the minuend. This is an example of his work:

$$
\begin{array}{r}
7749 \\
-340 \\
\hline 770
\end{array} \quad 670-97=670
$$

The student was consistent throughout the subtraction test in literally removing the subtrahend. Another example of lack of understanding by the low achiever is evident in this division exercise.

It would seem that the student worked from right to left. $5: 5=1 ; 0 \div 5 \equiv 0 ; 0 \div 5 \equiv 0 ; 7 \div 5=1$ and a remainder of 2 . This particular $\overline{\text { itudent }}$ did all of his division exercises from right to left. He expressed a high confidence level of (5). Probably he was confident he knew how to use the division algorithm because he used the other three arithmetic operations-addition, subtraction, and multiplication by beginning the operation at the right. It worked for these operations and lack of understanding led him to beleive it would also work for the division algorithin.

However, the student would still get his exercises marked
wrong. Why is he still confident that his computational procedures are right? Maybe he is using a defense mechanism. That is, he may be protecting his pride and soothing his ego by not admitting to himself that he cannot do his computations. Using a defense mechanismi is an attempt by the individual to defend himself against feelings of inferiority occasioned by his failure to do his arithmetic computations. By not admitting to himself that he is incapable of doing arithmetic computations he minimizes his failure to himself. (Loree: 1970) This might be the reason a low achiever indicated algorithmic confidence when his computational procedures are incorrect.

But this paper argues that the main reason for algorithmic confidence stems from random reinforcement.

Skinner, who has been responsible for the concept of reinforcement, noted that some responses occur without any particular stimulus at all. These emitted responses he calls operants. psychologists before Skimer recognized spontaneous or random responses, but they believed that such responses were caused by some unknown or unidentifiable stimulus. Skinner believes that operants simply occur and that the stimulus conditions are irrelevant to the use and understanding of operant behavior. For Skinner, the fact that the operant be reinforced is important. He believes that if the operant is reinforced the probability of that operant occuring again is increased. What is really important for Skinner is the reinforcement the subject gets after the operant or response is made. This reaction shapes the chances of the student giving this operant response again or of his
giving a similar response in the same class of responses.
Responses, then, are the most irmportant aspect of operant learning, and the way they are reinforced determines most of the qualities of the learning. One of the rirst discoveries that Skinner made was that operants can be shaped without rewarding or reinforcing every response. He realized that it is not necessary to reinforce after every desired response but onjy internittently during the course of several such responses. This realization led Skinner to study two basic patterns of reinforcement. In the first, interval reinforcement, a reward is given on a fixer. interval of time-say, every three minutes. In the second, ratio reinforcenent, a reward is given after a fixed ratio of responses- say, after every ten or fifteen responses have occurred. Oddly enough, Sfinner frund that the less frequent the reinforcenent on a ratio schedule, the more rapid the response. That is, the animal behaved as if he knew that the faster ne responded the faster he would be reinforced.

Both fixed interval and fixed ratio reinforcement schedules are characterized by a pause in response just after reinforcement. Animals seem to know that the responses made just after a reinforcement will never result in another dinmediate reinforcement. These pauses do not occur if the reinforcement schedule is made random. If the time interval size is varied at random, there is always a chance that the next response after reinforcement could result in another reinforcement, and the animal does not pause.

Is this strange animal behavior reflected in human behavior? It certainly is. Consider for a moment a Los Vegas slot machine player who gets an occasional or random payoff. He plays
vigorously because he does not know at what moment the next payoff will come. But he keeps playing because he is confident that the payoff will cone.

What does a $\mathrm{L} \phi \mathrm{s}$ Vegas slot machine player's confidence have to do with a student's algorithmic confidence? The student's algorithmic confidence is reinforced the same way that the slot machine player's confidence is reinforced. That is by random reinforcement, which according to Skinner is the best reinforcement and the hardest to extinguish. The Richond Study shows that students using an incorrect arithmetic algorithm can get some exercises correct. The algorithm may not work for many exercises but every now and then it will produce a correct answer. Therefore, the student gets random reinforcement which mades him feel confident that the algorithm he is using is correct. The following examples will show that an incorrect algorithm will work in some cases but not in others. In the example:

299
$6 \emptyset 0_{1} 7$

- 289
the student begins renaming by crossing out the 3 and writing 2 . Crosses out the 0 and writes 9. Crosses out the next 0 to the right and writes 9. He finishes renaming by putting a 1 in front of the 7. This is correct. His algorithm works for this exercise but using the same algorithn in the following example it does not.

1299
2700

- 857

The student begins his renaming by stroking out the 2 at the left, then the 3 and writing 2 above it. 0 is crossed out with 9 written above and also the last 0 on the right is crossed out
with a 9 written above it. This is incorrect. The student's algorithm does not work if a 0 comes at the end of the minuend. However, using this algorithm the student will sometimes get some of his exercises correct.
In multiplication, a student doing the following exercise gets a correct answer using the multiplication algorithm as he knows it.
but when asked to find the product of
9056
$\times \quad 23$
$181122 \overline{7168}$
his answer is incorrect. But the algorithm he is using does work for some of his exercises.

Using an incorrect algorithm, the low achiever may occasionally get an exercise correct. This gives the student random reinforcement. According to Skimer, he is getting the best reinforcement to keep him at work. He does not question whether or not his computational procedures are correct. Why should they be wrong when every once in awhile he gets a correct answer? This keeps him confident that his computational procedures are correct. What does this mean to the remediator? It means that before a remediator can help a student correct his computational procedures that the student's algorithmic confidence must first be extingui shed.

Chapter 3
METHOD AND RESULTS

For the Richnond Study, a low achiever in a given operation and grade is defined as one whose score is more than one standard deviation below the mean. Performance distribution for each grade and operation are far from nomal distributions. In fact, they are highly skewed positively. But it is felt this commonly accepted approach is more realistic than either choosing a lower fixed percentage of the population or a lower performance level of the population.

Pupil scores, in subtraction and multiplication, ranged from 0 to 12. In division, the range is from 0 to s but in addition scores ranged from 1 to 12 . The scores of 0 in addition were eliminated because the addition test appeared on the back of the subtraction test. It was assumed that all students who scored 0 on the addition test did not attempt the test.

The tables that follow show the upper-1imit for low achievers which was calculated for each operation and at each grade level.

Table I
Grade 5: Upper Limit for Low Achievers

Operations:	+	-	x	\dagger
Mean	11.0375	10.0162	9.0853	4.0949
Stanciard Deviation	1.7137	2.4662	2.8721	2.7411
Upper-1imit	9.3238	7.5500	6.2132	1.3538

Table II
Grade 6: Upper-Limit for Low Achievers

| Operations | + | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Mean | 11.2205 | 10.4579 | 10.0468 | 5.2682 |
| S.D. | 1.5916 | 2.0370 | 2.1749 | 2.4523 |
| Upper-1imit | 9.6289 | 8.4209 | 7.8719 | 2.8259 |

Table III
Grade 7: Upper-Limit for Low Achievers

	+	-	x		
Operations	+	11.3196	10.6641	10.5103	5.8944
Mean	1.6323	1.8817	1.8855	2.2706	
S.D.	9.6873	8.7824	8.6248	3.6238	
Upper-1imit					

Table IV
Grade 8: Upper-Limit for Low Achievers

Operations	+	-	x	;
Mean	11.4050	10.8326	10.7272	6.0410
S.D.	1.4412	1.6005	1.6188	2.0630
Upper-1imit	9.9638	9.2321	9.1084	3.9773

The actual scores used to categorize the low achiever for each operation and at each grade level is shown in the following table.

Table V

Upper-Limit Used to Deternine the Low Achiever				
Operations	+	-	x	7
5	9	7	6	1
$\frac{9}{6}$	9	8	7	2
7	9	9	9	3

Using these scores as an upper-1imit for the low achiever, the next concern was to find the algorithmic confidence by operation and grade level. The following tables give the confidence values from low to high by the numbers $1,2,3,4$, and 5 . Listed under the confidence values are the corresponding frequency of errors.

Table VI						
Addition-Grades 5-8						
Frequence Confidence		1	2	3	4	5
	5	2	0	24	51	35
$\begin{aligned} & y \\ & \text { y } \\ & \text { B } \\ & 0 \end{aligned}$	6	1	1	5	26	41
	7	0	1	3	21	24
	8	1	u	3	15	13
Total		4	2	35	113	113

Table VII
Subtraction-Grades 5-8

Frequencyconfidence		1	2	3	4	5
	5	4	6	58	80	26
告	ϵ	3	2	49	112	41
	7	0	4	15	101	50
	8	2	2	13	86	80
Total		9	- 14	135	379	197

Table VIII
Multiplication-Grades 5-8

Table IX
Division-Grades 5-8

Frequency	ence	1	2	3	4	5
$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	5	44	47	138	85	20
	6	23	26	96	84	21
	7	12	17	68	113	28
	8	8	15	51	69	20
Total		87	105	353	351	89

This study regards the low achiever with high algorithmic confidence to be the number of students in columns 4 and 5 . Following is a table showing the number of students in this category.

Table X
Number of Low Achievers with High Algorithmic Confidence

Operation: Confidence	Addition			Subtraction			Multiplication Division						
	4	5	¢uba		5	Suta	4	5	Sub	4	5	Sutal	
5		35	86	80	20	106	97	31	128	85	20	105	425
86	26	41	67	112	41	153		32	106	84	21	105	431
\%	21	24	45	101	50	151	77	47	124	113	23	141	461
$\bigcirc \frac{8}{8}$	15	13	28	86	80	166	92	63	155	69	20	89	438
Sub-Total			226			576			513			440	1755

Table X confims that there is a substantial number of 10 w achievers in Grades 5 to 8 who have high algorithmic confidence. The sub-totals for confidence levels 4 and 5 show the number of students who expressed algorithmic confidence in each of the arithmetic operations-addition, subtraction, multiplication,
and division. However, it must be noted that in the total number of algorithnic confidences expressed that there is an over1ap. The number 1755 does not represent the total number of individual students expressing high algorithmic confidence: One low achiever might indicate a high confidence level in all four basic operations. Therefore, the total number of low achievers with high algorithmic confidence indicated in the table would appear to be four rather than one. Nevertheless, the evidence is clear that for each arithmetic operation there is a substantial number of low achievers who express high algorithmic confidence in each operation.

For purposes of comparison Table XI shows the number of 10 W achievers with low algorithmic confidence.

Table XI
Number of Low Achievers with Low Algorithmic Confidence
Operation: Addition Subtraction Multiplication Division

Confidence	1	2					2		Suta		1	2		Subă	1		2	Sotā	Total

5	2	0	2	4	6	10	11	19	30	44	47	91	133
6	1	1	2	3	2	5	3	8	11	23	26	49	67
7	0	1	1	0	4	4	1	4	5	12	17	29	39
8	1	0	1	2	2	4	0	2	2	8	15	23	30
Sub-total		6		23			48			192	269		

By comparing Table XI with Table X, it is quite evident that low achievers with high algorithmic confidence certainly outnumber low achievers with low algorithmic confidence. Also in Table XI, the number 269 does not represent the total number of individual students expressing low algorithmic confidence. As
explained for Table X, one low achiever might indicate a low confidence level for all four basic operations. The table, then, would show a total of four instead of one. This, however, is true for both tables.

The results of this study are conclusive. As suspected, there are a number of students who have algorithmic confidence, yet their computational procedures are incorrect. Table X shows that out of 5440 students from Grades 5 to 8 in the Richmond District 1755 low achievers express high algorithmic confidence in their computational procedures.

Chapter IV

Conclusion and Implications for Further Study

This paper began by describing why it was felt necessary to do this study. It was recognized by remediators that some low achievers had high algorithmic confidence even though their computational procedures were incorrect. Permission was given by the Richmond School Board to conduct the study in that area with all students of Grades 5 to 8. A total of 5440 responses to algorithmic confidence questions and test items were used.

The purpose of this study was to establish the existence of a population of low and high confidence students with low and high algorithmic confidence in their computational procedures. The results indicated, as suspected, that there is such a population and, in fact, low achievers with high algorithmic confidence are in the majority. It is also established, as expected, that there is a different distribution of confidence for each grade level as well as each confidence level. This could suggest that any study done along similar lines of this study could be losing information if it is assumed that student characteristics are uniform across grades or operations.

For this study the low achiever is identified as one whose score is more than one standard deviation below the mean. Tables show how the upper-limit for low achievers was calculated for each operation and at each grade level. It is argued in this paper that the low achiever has high algorithmic confidence in his computational procedures, because of random reinforcement. The student gets random reinforcement when once in awhile an incorrect algorithm gives a correct answer. He, therefore,
assumes that the alorithm he is using is correct. Skinner, in his research work found that random reinforcement is the best reinforcement to keep a subject vigorously at work.

Tables are supplied to indicate that a population of low achievers with high algorithmic confidence does exist in grade levels 5 to 8 . Many implications for renediators are raised as a result of this study. When the entire study is completed, teachers, remediators, textbook writers, and computer programers should have an entirely new challenge in diagnosing and remediating the low achiever.

The results of this study will have important implications to clas sroom teachers and remediators. Teachers and remediators will be more aware that low achievers have high algorithmic confidence in their computational procedures. It is important that teachers have a systematic method to diagnose and code student's errors. It is evident from this study that a student's algorithmic confidence does have to be extinguished before remediation can take place.

For textbook writers, a change in format and design to meet the needs of low achievers in this category is necessary. The need to be more specific in the writing of behavioral objectives in lesson preparation will help to eliminate learning gaps for these students. Prograrmed learning, with its step-by-step approach should also assist the low achiever to acquire the correct algorithmic procedure.

The writing of a diagnostic computer program on the basis of all the incorrect answers and subsequent coding of errors for
each question is another means to help correct this problem. A computer program, whereby given the data of the survey, the program can take each question and 1 ist all the incorrect answers and corresponding codes. The program could be implemented in such a way that it can diagnose all the errors students perform. A computer remediation program can then be written to do the remediation.

These are but a few of the many implications for educators that result from this study.

January 3, 1975

1in. C. hiolob
Dictrict Superintendent of Sehools
Richnond Schcol District No. 38
689 lio. 3 road
Richeosd, B. C.

Dear Mr. \#iolob:
 in Grades 5 through 3 in the Zicheond seheols. Specificelly, I nese apeutimately onc hour of clase time, preferably dizaced fato two half kouz yetiods on successive dgys in with to eather sone data on the arstinatic suinis of these students.

Duzing thece wo pariode the students will bs asked to colve addtion, $x=-$ traction, Eultiplication, and division empeles with whole aumbers. Iu andition, they will be ashed to express the degree of confidence thay hive in their cisility to perform these operations.

The deta obtafyed will be useful to me in several ways. As director of A. A Nathematies Education Clinic at UnC, I nedd deza on the types and inequcucy of student earors in arithmetic skills. In particular, ve have some evicianc. which indicates that studento who are unzule to compute correctly atill ouprose a relativoly high degree of confidence in thefz ability to compte. If thet proves to be the case in a large acale atudy, it ufll heve frpoztant rawifications for remedial work.

For your inforeation I have enclosed a prellminary cop; of cach of the tevte I intond to uce, the fital version will be printed and will ask for edjteiosal informetion from the student such as age and grade level.

If gou are agrcesble to chis proposal, I would appreciate receiving tive following informition:

1) a list of the namos of your sehools where there ate grada 5, 6, 7 or 8 clasees together with the enrollwont in these classes;

$$
-2-
$$

2) dates when the teating wight best be dones (rom ny purposes lata vanuary oa easly Fobruaty would be most suitable.)
3) tho rame of a contact parson in your district to act as liaison between your diserict and me.

Thank you for considering my requeat.

> Sincerely,

David Robitaille Asefistant Professor Kathenatios Education

DR/R

c.c. Mr. R. Campbell Encl.

RE: U.B.C. SURVEY OE MATH SKILLS

Pomission has been granted to Ur. David Robitaille to gather data on Riolmord students enrolled in Grades 5 thwotigit 8. Specifically, Dr. Robitaille seeks data on the types and frequency of student errors in arithmetic skills.

Posting material arc teacher instructions, in sufficient number for alt students in Grades 5,6 and 7 with be delivered to senosts on denary $30 / 31$. The test, requiring approwinatent 40 minutes should te goon early in the week of February 3 with rectums to the office of the Elementary Supemisor on or before Friday, February 7, 1975.

The data gathered from this testing progncme will assist Dr. Robitaille and his staff to irmrove the ix remediation work at the University's Math Clinic. Thonk-you, on their behalf, for your assistance with this survey.

C. HOLD,

District Superintendent of Schools.

CH: tb

For each question, put an X through one of the letters a, b, c, d, or e.

1. How sure are you that your way of anding is correct?
(a) I'm positive that my way is correct.
(b) I'm pretty sure that my way is corract.
(c) I don't know if my way is correct or ne:.
(d) I'mpretty sure my way is wrong.
(e) I'm positive my way is wrong.
2. How sure are you that your way of SUBTRACTING is correct?
(a) I'mpositive that my way is correct.
(b) I'm pretty sure that my way is correct.
(c) I don't know if my way is corfect or not.
(d) I'm pretty sure that my way is wrong.
(d) I'm positive that my way is wrong.
3. How sure are you that your way of MULTIPLYING is correct?
(a) I'ti positive that my way is correct.
(h) I'n pretty sure that my way is correct.
(c) I don't knur if my way is correct or not.
(d) I'a pretty sure that ray way is wrong.
(c) I'm positive that my way is wrong.
4. How sure are you that your way of DIVIDING is correct?
(a) I'm positive that my way is correct.
(b) I'm pretty sure that my way is correct.
(c) I don't know if my way is correct or not.
(d) I'm pretty sure that my way is wrong.
(e) I'm positive that my way is wrong.
work in the space provided.)

(Show all your

$\frac{1}{1}$	2.	3	ADDI'ION TAELE			7	8	9
			4	5	6			
2	4	,	6	7	8	9	1.0	11
3	5	6	7	8	9	10	11	12
4	6	7	8	9	10	11	12	13
5	7	8	9	10	11	12	13	14
6	8	9	10	11	12	13	12.	15
7	9	10	11	12	13	14	15	16
8	10	11.	12	13	14	15	16	17
9	11.	12	13	14	15	16	17	18

MULTIPLICATION TABLE

2	2	3	4	5	6	7	8	9
2	4	6	8	10	12	14	16	18
3	6	9	12	15	18	21	24	27
4	8	12	16	20	24	28	32	36
5	10	15	20	25	30	35	40	45
6	12	18	24	30	36	42	48	54
7	14	21	28	35	42	49	56	63
8	16	24	32	40	48	56	64	72
9	18	27	36	45	54	63	72	81

Appendix V

The University of British Columbia
MATHE MATICS EDUCATION DIAGNOSTIC CENTER.
dIagnosis form for intermediate crades

Algorithms for Natural Numbers

Addition	Three-digit nos. with regrouping.
	Two-digit nos. with regrouping.
	Single column with regrouping.
	Single column with no regrouping.
	Basic facts.
Subtraction	Two consecutive 0 's in the minuend.
	One 0 in the minuend
	With regrouping.
	No regrouping.
	Basic facts.
Muliplication	Three-digit multiplier; incl. zero.
	$\begin{aligned} & \text { Two-digit } \\ & \text { multiplier. } \end{aligned}$
	One-digit multipler; with regrouping.
	One-digit multiplier, no regrouping.
	Basic facts.
Division	Zero in the quotient.

Principles (contd) Multiples of powers
 of 10 as factors.

Equal factors.

Fraction Concepts Part-whole.

Subset-set (equal parts).

Sabset-set (gen.)

Extension to no.

line.
$\frac{a}{b}=a \div b$.

$\frac{a}{b}=a \times \frac{1}{b}$.

* Order.

Equivalence.

Names of one.

Algorithms for Rational Numbers (addition and subtraction)

Renaming.

Mixed nos. to impproper fractions
 and vice versa.

Subtraction-mixed nos.

Subtraction-proper fractions.

Addition-proper fractions.

Subtraction-given LCD|-_
Addition-given LCD. -
Algorithms for Rational Numbers (multiplication and division)

Computation with Decimal Fractions
Addition.

Subtraction.

Multiplication. •

Division-whole no. divisor.

Division-gen.

Change decimal to fraction; vice
 versa.

- 37 -

Percent

References

Asaheld, D. Woodruff, Basic Concepts of Teaching, San Francisco: Chandler Publishing Co., 1962, p. 106.

Browne11, William A. "The Progressive Nature of Learning in Mathematics," The Mathematics Teacher, Vo1. XXXVII, No. 4, 1944, pp. 147-157.
Hi11, Winfred F., Learning A Survey of Psychological Interpretations, Revised Edition, Toronto: Chandler Publishing Co., 1971, pp. 57-82.
Loree, M. Ray, Psychology of Education, Second Edition, New York: The Ronald Press Company, 1970, p. 557.
Mednic, Sarnoff A. , Learning, Toronto: Prentice Hall of Canada Ltd., 1964, pp. 27-53.
Ross, Ramon, "A Description of Twenty Arithmetic Underachievers," The Arithmetic Teacher, Apri1, 1964, pp. 235-41.
Skinner, B.F., The Behavior of Organisms, New York: AppletonCentury=Crofts, Inc., 1938
, 'The Experimental Analysis of Behavior", American S'cientist, 45, 1957, pp. 347-371. , and Charles B. Ferster, Schedules of Reinforcement, New York: Appleton-Century-Crofts, 1957.
, "The Science of Learning and the Art of Teaching", Harvard Educational Review, 24, 1954, pp. 86-97.
Sprinthal1, Richard, C., Sprinthall, Norman A., Educational Psychology: A Developmental Approach, Don Mil1s: Addison-Wesley Publishing Co., 1974, pp. 207-218.
Sulzer, Beth, and Roy G. Mayer, Behavior Modification Procedures for School Personnel, Illinois: The Dryden Press, Inc., 1972, pp. 103-133.

